Density Propagation Based Particle Filter Algorithm for Video Object Tracking
نویسنده
چکیده
These Video object tracking is an important topic in multimedia technologies. Particle filtering has proven very successful for non-linear and non-Gaussian estimation problems. In this paper, we proposed a novel approach for video object tracking, named by Density Propagation based Particle Filter (DP-PF). Our approach exploits color histogram to capture the features from object in the video, integrates density propagation algorithm for particle initialization together with resample technique into particle filtering and uses Bhattacharyya distance as a similarity measure for the model. Experimental results of applying the density propagation technique show improvement in tracking and robustness in recovering from partial or complete occlusions. The superior real-time performance and higher discriminative power is also demonstrated by comparison with Data-Driven Adaption based Particle Filter.
منابع مشابه
An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملObject Tracking with an Evolutionary Particle Filter Based on Self-Adaptive Multi-Features Fusion
Particle filter algorithms are widely used for object tracking in video sequences, but the standard particle filter algorithm cannot solve the validity of particles ideally. To solve the problems of particle degeneration and sample impoverishment in a particle filter tracking algorithm, an improved object tracking algorithm is proposed, which combines ...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملRobust video object tracking using particle filter with likelihood based feature fusion and adaptive template updating
A robust algorithm solution is proposed for tracking an object in complex video scenes. In this solution, the bootstrap particle filter (PF) is initialized by an object detector, which models the time-evolving background of the video signal by an adaptive Gaussian mixture. The motion of the object is expressed by a Markov model, which defines the state transition prior. The color and texture fe...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012